

Structural Imaging

Nathan T. Cohen, MD

Assistant Professor

Neurology & Pediatrics

GWU School of Medicine

Disclosures

- I have no relevant financial disclosures.
- Research supported by American Academy of Neurology Career Development Award.

 Many slides based on prior lectures of Taha Gholipour, MD.

Outline

Patient and Protocol Selection

Common Epilepsy Imaging Findings

Clinical Uses of Neuroimaging in Epilepsy

Acute/emergent eval (CT most helpful)

Determine risk recurrence after single unprovoked sz

Assist with classification (focal/multifocal/diffuse)

 Evaluate/select candidates with pharmacoresistant epilepsy (PRE) for surgery

Clinical Uses of Neuroimaging in Epilepsy

• In PRE pts who are "MRI-negative," multimodal imaging with FDG-PET, SISCOM, voxel-based morphometry, automated detection algorithms, MSI

• fMRI/MEG for language lateralization, motor localization

Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force

- Who should have MRI?
 - Rate sz recurrence doubles with lesional MRI
 - From 10 to 26% at 1y; 29 to 48% at 5y

First seizure

- Acute setting: CT recommend in acute setting, with HARNESS MRI soon after
- Note: early MRI recommended in young children as progression of myelination may mask FCD

- Newly diagnosed epilepsy
 - MRI lesion strongly associated with PRE
 - lesional MRI is 2.5x more likely sz-free with surgery
- Generalized epilepsy
 - Insufficient evidence
 - Is recommended if atypical features: focal neurological deficit, cognitive decline, refractory seizures, or focal interictal discharges

- Repeating MRI
 - Repeat if prior images not available or suboptimal
 - For PRE with prior "normal" MRI, repeat MRI may reveal lesion in 30-65% of cases, up to 70% with postprocessing

Protocol

- Harmonized Neuroimaging of Epilepsy Structural Sequences (HARNESS)
 - isotropic, millimetric 3D T1 and FLAIR images
 - high-res 2D submillimetric T2 images

- 3T MRI preferred
 - If 1.5T, preferred minimum 8-channel phased array coil to boost signal to noise ratio

HARNESS Protocol Specific Details

N	ame	Primary MR image weighting	MR image acquisition	Advantages
M	landatory sequences			
	Magnetization-prepared rapid gradient echo (MPRAGE), spoiled gradient echo (SPGR), or turbo field echo (TFE)	T1-weighted	3D	High-resolution images that can be reformatted to be viewed on coronal, axial, and sagittal planes; optimal visualization of brain anatomy and morphology
	3D fluid attenuation inversion recovery (FLAIR)	T2-weighted	3D	3D high-resolution images that can be reformatted to any plane; CSF nulling enhances visibility of epileptic pathologies such as focal cortical dysplasia, hippocampal sclerosis, tubers, hamartomas, and glial scars
	Coronal spin echo (acquisition plane perpendicular to the long axis of the hippocampus)	T2-weighted	2D	High in-plane resolution; optimal visualization of hippocampal internal structure on coronal cuts
O	ptional sequences			
	Gadolinium-enhanced MRI	T1-weighted	3D	Best for assessing tumor-like lesions, vascular malformations, or infectious processes
	Susceptibility-weighted imaging (SWI)	T2*-weighted	3D	Sensitive to iron deposits, blood products, and calcifications

EPILEPSY PROTOCOL - 3D MRI

T1-weighted

Sequence type: gradient echo

Voxel size (mm): $1 \times 1 \times 1$

Best to evaluate: anatomy and morphology

(volume, thickness, sulco-gyral shape, grey-white

matter interface integrity)

FLAIR

Sequence type: turbo spin echo

Voxel size (mm): $1 \times 1 \times 1$

Best to evaluate: signal intensity

Caveat - Not sensitive in neonates and children <24 months of age due to incomplete myelination

MRI Yield

 Prospective study adults NOS, epilepsy protocol MRI ID lesion in 28% all pts, 58% if focal sz

- Cross sectional study 495 focal epilepsy pts
 - Standard MRI lesion 49%, epilepsy protocol MRI 72%

MRI Yield

- Importance of experienced neuroradiologist:
 - Epilepsy protocol MRI + experienced radiologist boosts detection from 39% to 85%

Lesional MRI = Better Surgical Outcome

European Epilepsy Brain Bank Study, n=9147

High Yield Epilepsy Imaging Findings

Hippocampal sclerosis (MTS)

Neuronal loss/gliosis

• 15% pediatric/44.5% adult surgical specimens

- Diagnostic Triad (needs 2 of 3):
 - Hippocampal atrophy (coronal T2)
 - High T2/FLAIR signal of hippocampus (coronal FLAIR)
 - Loss of internal architecture (interdigitations) of hippocampus (coronal T2)

Hippocampal sclerosis (MTS)

Hippocampal Sclerosis Secondary Findings

Hippocampal Sclerosis Dual Pathology

- HC atrophy + coexisting extrahippocampal macroscopic lesion not encroaching on HC structure
- Only ~5% of cases (if use FCD classification)
- Vascular malformations, MCD, glioneuronal tumor, perinatal ischemic lesion etc.
- Note FCD Type IIIA (FCD + HS) is not dual pathology

Malformations of Cortical Development (MCD)

- Abnormal Proliferation or Apoptosis
 - Microcephaly, Megalencephaly, Dysplasia (FCD Type II or ganglioglioma)
- Abnormal Migration
 - Band & Nodular Heterotopia, Cobblestone malformation, Lissencephaly, PMG
- Abnormal Post-Migrational Development
 - FCD Type I

Focal Cortical Dyplasia

FCDI ^a	FCDIa abundant microcolumns	Ia abundant microcolumns FCDIb abnormal FCDIc vertical and horizontal abnormalities layering			
FCDII ^a	FCDIIa dysmorphic neurons FCDIIb dysmorphic neurons and balloon cells		n cells		
FCDIII ^a	FCDIIIa cortical dyslamination associated with hippocampal sclerosis	FCDIIIb cortical dyslamination adjacent to brain tumor	FCDIIIc cortical dyslamination adjacent to vascular malformation	FCDIIId cortical dyslamination adjacent to lesion acquired during early life, e.g. stroke	
White Matter ^a	mMCD ^b with excessive heterotopic neurons ^a		mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE) ^c		
No definite FCD on histopathology ^a Abnormality of cortical organization remains ambiguous and histopathological findings not compatible with FCDI, II or III ^d					

FCD IIB

Bottom-of-sulcus

Balloon cells

• mTOR pathway DEPDC5, NPRL2, NPRL3

Other FCDIIB

- ILAE 2022 Consensus FCD classification recommend
 7T if 3T remains negative
- "Ultra-high-field MRI could further advance the diagnostic yield in FCDI and FCDII and should be used in "MRI-negative" cases whenever possible"

• 7T yields 1/3 detection subtle FCD in 3T-negative studies

Hemimegalencephaly

Unilateral overgrowth

Pachygyria (thick)

Tx: hemispherectomy

Gray matter heterotopia

- Periventricular nodular
 - Unilateral (A+B)
 - Bilateral (C+D)

Gray matter heterotopia

- Subcortical transmantle
 - Ventricular wall to cortex

• 22q11.2 and *FLNA*

Gray matter heterotopia

Subcortical band

- Doublecortin DCX
 - More common
 - Female/anterior

• LIS1

Posterior predominant

Lissencephaly

• "smooth brain"

Agyria or pachygyria

Polymicrogyria

Bilateral perisylvian PMG

Polymicrogyria

- Focal unilateral
 - Can be acquired
 - E.g. CMV or perinatal stroke
- Schizencephaly
 - PMG often lines cleft
 - Open lip (J+K)
 - Closed lip (L+M)

Long-term-Epilepsy-Associated Tumors

- 22% of cases
- Ganglioglioma most common
 - Peripherally cystic w/enhancing mural nodule
 - T1 hypo to isointense

• FLAIR hyperintense T1

Long-term-Epilepsy-Associated Tumors

- Dysembryoplastic neuroepithelial tumor (DNET)
- Bubbly appearance
- Nodule without enhancement

Tuberous Sclerosis Complex

- TSC1 (hamartin Chr9) or TSC2 (tuberin Chr16)
- Neurocutaneous disorder (skin/eye/brain)
- Cardiac (rhabdomyoma)
- Renal (angiomyolipoma)
- Lung (lymphangio-leiomyomatosis)

Tuberous Sclerosis Complex

Numerous cortical tubers (High T2, low T1)
Subependymal nodules (arrow, often calcified)

Subependymal giant cell astrocytoma (SEGA) (enhancing)

Sturge Weber Syndrome

- Facial nevus flammeus (port wine stain) V2
- Leptomeningeal angiomatosis
- Glaucoma
- Scleral or choroidal angioma

• GNAQ

Tram track calcification

Hypothalamic Hamartoma

- Refractory epilepsy/encephalopathy
 - Gelastic seizures
- Endocrinopathy
- Isointense to gray matter
- Nonenhancing

Rasmussen encephalitis

- Progressive encephalitis
- Hemiparesis
- PRE

Epilepsia partialis continua

Neurocysticercosis

- Taenia solium
- MRI stages:
- Scolex (A) T2+, T1-, enhancing
- Colloidal (B) cyst T2+, T1-, FLAIR+
- Granular nodular (C) small enhancing
- Late granular (D) T2-, T1-, CT calcified

Cavernous Malformations

- T2 Central hyperintensity (subacute hemorrhagemethemoglobin)
 - "black halo" sign (chronic hemorrhage-hemosiderin)
- GRE dark (hemosiderin)
- T1 central hyperintense, circumferential hypointensity

Vascular Malformations

- AVM
 - Tangle blood vessels
 - T1 and T2 serpiginous flow voids

Nidus (feeding vessel) seen on T2/SWI

T2

Porencephaly

- Trauma/infection/stroke
 - Encephalomalacia
 - Laminar necrosis
 - Gliosis with cortical/subcortical T2+
 - If communicate w/ventricle
 - Porencephalic cyst

Summary

 High-resolution epilepsy protocol MRI done at highest resolution available is recommended

- Lesional MRI affects
 - seizure risk prognostication
 - epilepsy diagnosis
 - surgical outcomes
- Always review your studies!

Thank you!

